STAFF SELECTION COMMISSION - Solved Papers SIMPLE INTEREST (Some Important Exercises)

1. Find the interest on Rs. 1460 at 10% from $5^{\text {th }}$ February, 1992 to $25^{\text {th }}$ April, 1992.
(1) Rs. 32
(2) Rs. 36
(3) Rs. 40
(4) Rs. 34

Ans: (1)
$\mathrm{P}=$ Rs. 1460
$\mathrm{R}=10 \%$
1992 is a leap year
$I=\frac{P R D}{36500}$
$I=\frac{1460 \times 10 \times 80}{36500}$
I = Rs. 32
Note : We have excluded $5^{\text {th }}$ February but included $25^{\text {th }}$
2. Find the amount Ram will get after 2 years when he invests Rs. 15000 at 15% interest.
(1) Rs. 18500
(2) Rs. 19500
(3) Rs. 17500
(4) Rs. 16500

Ans: (2)
Here, $\mathrm{P}=$ Rs. 15000
$\mathrm{R}=15 \%$
$\mathrm{T}=2$ years

$=15000 \times \frac{130}{100}$
A = Rs. 19500
3. At what rate per annum will a sum of Rs. 5000 amount to Rs. 6000 in 4 years?
(1) 6% p.a
(2) 4% p.a
(3) 5% p.a
(4) 4.5% p.a

Ans: (3)
Here, P = Rs. 5000
A $=$ Rs. 6000
$\mathrm{T}=4$ years
So, $\mathrm{I}=\mathrm{A}-\mathrm{P}$
$=$ Rs. $(6000-5000)=$ Rs. 1000
$\mathrm{R}=\frac{100 \mathrm{I}}{\mathrm{PT}}$
$\mathrm{R}=\frac{100 \times 1000}{5000 \times 4}$
$\mathrm{R}=5 \%$
4. Ram lentRs, 1200 to Shyam for 5 years and Rs. 1500 to Mohan for 2 years received altogether Rs. 900 as interest. Find the rate per annum.
(1) 8.5%
(2) 8%
(3) 9%
(4) 10%

Ans: (4)
$\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}$
$\mathrm{I}=\frac{\mathrm{P}_{1} \mathrm{RT}_{1}}{100}+\frac{\mathrm{P}_{1} \mathrm{RT}_{2}}{100}$
$\mathrm{I}=\frac{\mathrm{r}}{100}\left(\mathrm{P}_{1} \mathrm{~T}_{1}+\mathrm{P}_{2} \mathrm{~T}_{2}\right)$
or, $r=\frac{100 I}{\mathrm{P}_{1} \mathrm{~T}_{1}+\mathrm{P}_{2} \mathrm{~T}_{2}}$
Here, I = Rs. 900
$\mathrm{P}_{1}=$ Rs. 1200
$\mathrm{T} 1=5$ years
$\mathrm{P} 2=$ Rs. 1500
$\mathrm{T} 2=2$ years
$\mathrm{R}=\frac{100 \times 900}{(1200 \times 5)+(1500 \times 2)}$
$R=\frac{90000}{9000}$
$R=10 \%$
Note: In case of more than two investment, sum the products of principal and time of each case.
5. A certain sum of money amounts to Rs. 1680 in 3 years and to Rs. 1800 in 5 years. Find the sum and the rate of interest.
(1) Rs.1500; 4\%
(2) Rs. 1200; 4\%
(3) Rs.1600; 5\%
(4) Rs. 1800; 5\%

Ans: (1)
$A=P+I$
So, P remains same in both cases. Only amount of interest are different in two cases because the time periods are different.
$\mathrm{P}+$ interest for 5 years
= Rs. 1800
And P + Interest for 3 years
= Rs. 1680
On subtraction we get,
Interest for 2 years $=$ Rs. 120
Now, we solve for the case of 3 years.

Interest for 3 years
$=$ Rs. $120 \times \frac{3}{2}=$ Rs. 180
And amount after 3 years
$=$ Rs. 1680
Principal $(\mathrm{P})=\mathrm{A}-\mathrm{I}$
$=$ Rs. $(1680-180)=$ Rs. 1500
$\mathrm{R}=\frac{100 \mathrm{I}}{\mathrm{PT}}$
$\Rightarrow \mathrm{R}=\frac{100 \times 180}{1500 \times 3}$

$$
\mathrm{R}=4 \%
$$

Note : Alternatively, we could have solved for 5 years too and got the same answer.
6. In how many years will a sum of money double itself at 5% rate of interest?
(1) 18 years
(2) 20 years
(3) 22 years
(4) 15 years

Ans: (2)
A sum doubles itself when amount of interest becomes equal to the principal.

So, $I=P$
Given, $\mathrm{R}=5 \%$
$\mathrm{T}=\frac{100 \mathrm{I}}{\mathrm{PR}}$
On substitution we get,

7. At what rate percent per annum will a sum of money double itself in 15 years?
(1) 4%
(2) $5 \frac{2}{3} \%$
(3) $6 \frac{2}{3} \%$
(4) 6%

Ans: (3)
Here again
$\mathrm{I}=\mathrm{P}$
$\mathrm{T}=15$ years
$\mathrm{R}=\frac{100 \mathrm{I}}{\mathrm{PT}}$
$\mathrm{R}=\frac{100 \times \mathrm{P}}{\mathrm{P} \times 15}$
$\mathrm{R}=\frac{20}{3} \%=6 \frac{2}{3} \%$
8. A man lends a certain sum of money and gets an interest equal to $\frac{1}{16}$ th of the principal, The time for which money was lent is equal to the rate of interest. Find the rate of interest per annum.
(1) 4%
(2) 3.5%
(4) 2.5%

Ans: (4)
Ans: (4)
$I=\frac{P R T}{100}$
Given: $I=\frac{P}{16}$
and $\mathrm{T}=\mathrm{R}$
So, on substitution we get
$\frac{\mathrm{P}}{16}=\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{R}}{100}$
$\mathrm{R}^{2}=\frac{100}{16}$
$\mathrm{R}=\frac{10}{4} \%=\frac{5}{2} \%=2 \frac{1}{2} \%$
9. At what rate of interest will a sum becomes $\frac{11}{10}$ times in 5 years?
(1) 2 P.c. P.a (2) 2.5 P.c. P.a
(3) 3 P.c. P.a (4) 3.5 P.c. P.a

Ans: (1)
$\mathrm{A}=\frac{11}{10} \mathrm{P}$
So, $I=A-P$

$$
\begin{aligned}
& \mathrm{R}=\frac{100 \mathrm{I}}{\mathrm{PT}} \\
& \mathrm{R}=\frac{100 \times \frac{1}{10} \mathrm{P}}{\mathrm{P} \times 5}
\end{aligned}
$$

$\mathrm{R}=2 \%$ per annum
10. A man borrowed Rs. 16000 from two persons. He paid 6% interest to one and 10% per annum to the other. In one year he paid total interest Rs. 1120. How much did he borrow at each rate?
(1) Rs. 10000 ; Rs. 6000
(2) Rs. 12000 ; Rs. 4000
(3) Rs. 11000 ; Rs. 5000
(4) Rs. 12500 ; Rs. 3500

Ans: (2)
Let the sum borrowed at 6% be Rs. $x=\mathrm{P}_{1}$

Then the sum borrowed at 10% $=$ Rs. $(16000-x)=\mathrm{P}_{2}$

Time is one year in both cases
$\mathrm{R}_{1}=6 \%$
$\mathrm{R}_{2}=10 \%$
$\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}$
$I=\frac{P_{1} R_{1} T}{100}+\frac{P_{2} R_{2} T}{100}$
$\mathrm{I}=\frac{\mathrm{T}}{100}\left(\mathrm{P}_{1} \mathrm{R}_{1}+\mathrm{P}_{2} \mathrm{R}_{2}\right)$
or, $\mathrm{P}_{1} \mathrm{R}_{1}+\mathrm{P}_{2} \mathrm{R}_{2}=\frac{100 \mathrm{I}}{\mathrm{T}}$
On substitution we get,
$(x \times 6)+(16000-\mathrm{x}) 10$
$=\frac{100 \times 1120}{1}$
$\Rightarrow 160000-4 x=112000$
$\Rightarrow 4 x=48000$
$\Rightarrow x=$ Rs. 12000
and $16000-x=$ Rs. 4000
11. A borrowed Rs. 1500 at 4% per annum and Rs. 1400 at 5% per annum for the same period. He paid Rs. 390 at total interest. Find the time for which he borrowed the sum.
(1) 3.5 years
(2) 2.5 years
(3) 3 years
(4) 4 years

Ans: (3)

$\mathrm{T}=3$ years
12. Find the annual instalment that will discharge a debt of

Rs. 12900 due in 4 years at 5\% per annum simple interest.
(1) Rs. 2750
(2) Rs. 2150
(3) Rs. 2500
(4) Rs. 3000

Ans: (4)
Let each equal annual instalment be Rs. x

First instalment is paid after 1 year and hence will remain with the lender for the remaining $(4-1)=3$ years.
Similarly, second instalment will remain with the lender for 2 years, third instalment for 1 year and the final fourth instalment remain Rs.x as such.
$\mathrm{A}=\mathrm{A}_{1}+\mathrm{A}_{2}+\mathrm{A}_{3}+\mathrm{A}_{4}$
$\mathrm{A}=\mathrm{P}\left(\frac{100+\mathrm{RT}}{100}\right)$
$\Rightarrow \mathrm{A}$

$=x\left[\frac{115+110+105+100}{100}\right]$
$\Rightarrow 12900=\frac{430}{100} x$
$x=\frac{12900 \times 100}{430}$
$x=$ Rs. 3000
13. A certain sum of money amounts to Rs. 6780 in 2 years and to Rs. 7360.50 in $3 \frac{1}{2}$ years.
Find the sum and the rate of interest.
(1) Rs. 6006 ; 6.4 P.c. P.a.
(2) Rs. 8006 ; 6.4 P.c. P.a.
(3) Rs. 5006 ; 5 P.c. P.a.
(4) Rs. 5506 ; 5 P.c. P.a.

Ans: (1)
Principal + S.I. for $3 \frac{1}{2}$ years $=$ Rs. 7360.50 \qquad
(i)

Principal + S.I. for 2 years $=$ Rs. 6780

On subtracting équation (ii) from (i),
S.I. for $1 \frac{1}{2}$ years $=$ Rs. 580.50
S.I. for 2 years
$=$ Rs. $\left(\frac{580.50 \times 2 \times 2}{3}\right)$
$=$ Rs. 774
\therefore Principal $=$ Rs. $(6780-774)$
= Rs. 6006
And, rate of interest
$=\frac{774 \times 100}{6006 \times 2}=6.4 \%$ per annum
14. If Rs. 5600 amounts to Rs. 6678 in $3 \frac{1}{2}$ years, what will Rs. 9600 amount to in $5 \frac{1}{4}$ years at the same rate of interest?
(1) Rs. 12732
(2) Rs. 12372
(3) Rs. 12722
(4) Rs. 12237

Ans: (2)
Interest $=$ Rs. $(6678-5600)$
= Rs. 1078
Rate $=\frac{\text { Interest } \times 100}{\text { Pr incipal } \times \text { Time }}$
$=\frac{1078 \times 100 \times 2}{5600 \times 7}$
$=5 \frac{1}{2} \%$ per annum
\therefore S.I. on Rs. 9600 for $5 \frac{1}{4}$ years
$=$ Rs. $\left(\frac{9600}{100} \times \frac{21}{4} \times \frac{11}{2}\right)$
= Rs. 2772
$\therefore \quad$ Amount $=$ Rs. $(9600+2772)$
= Rs. 12372
15. A man promises to his wife a birthday present, given her each year a number of rupees equal to the number of years in her age. If her birthday falls on August 8, what sum must be placed at simple interest at 7% on January 1 before she is 63 (non leap year) in order to raise the required sum?
(1) Rs. 1600
(2) Rs. 1550
(3) Rs. 1500
(4) Rs. 1450

Ans: (3)
Let the sum be Rs. 100
Number of days from January 1 to August $8=31+28+31+$ $30+31+30+31+7=219$ days $=\frac{219}{365}$ year $=\frac{3}{5}$ year
S.I. on Rs. 100 for $\frac{3}{5}$ year at
$7 \%=$ Rs. $\left(\frac{100 \times 3 \times 7}{100 \times 5}\right)$
$=$ Rs. $\frac{21}{5}$
If required money is Rs. $\frac{21}{5}$
sum $=$ Rs. 100
If required money is Rs.63, sum $=$ Rs. $\left(100 \times \frac{5}{21} \times 63\right)$
$=$ Rs. 1500
16. It is decided that a loan of Rs. 10000 will be paid off at the rate of Rs. 800 per month in 15 equal instalments. Find out the rate of return on investment.
(1) 17% P.a.
(2) 18% P.a
(3) 15% P.a.
(4) 16% P.a.

Ans: (4)
Number of monthly instalments
$=15$
Monthly instalment $=$ Rs. 800
Time $(T)=\frac{15}{12}=1 \frac{1}{4}$
Total amount paid
$=$ Rs. $(800 \times 15)=$ Rs. 12000
Interest $=$ Rs. 12000 - Rs. 10000
$=$ Rs. 2000
When
Inyestment Interest Years

10000		
100	?	2000
		$1 \frac{1}{4}$
1		

\therefore Rate of return (?)
$=\frac{100 \times 2000 \times 1 \times 4}{10000 \times 5}=16 \%$
17. A person takes loan of Rs. 4000 on the condition that he would pay it in the monthly instalment of Rs.500. He has to pay interest @ 6\% on the outstanding balances, then find out the average rate of interest received by the creditor.
(1) $3 \frac{3}{8} \%$ P.a.
(2) $2 \frac{3}{8} \%$ P.a.
(3) $4 \frac{3}{8} \%$ P.a.
(4) $3 \frac{1}{8} \%$ P.a.

Ans: (1)
Monthly instalment
$=$ Rs. 500
Total loan $=$ Rs. 4000
\therefore Number of instalments

Once the payment starts, outstanding balances will go on diminishing.

Hence, from point of view of interest, principal $=4000+$ $3500+3000+2500+2000+$ $1500+1000+500=$ Rs. 18000
\therefore Interest on Rs. 18000 for 1 month at 6% p.a.
$=\frac{18000 \times 6 \times 1}{100 \times 12}=$ Rs. 90
Average rate of interest
$=\frac{\mathrm{I} \times 100}{\mathrm{P} \times \mathrm{T}}$
$\mathrm{T}=8$ months $=\frac{8}{12}$
$=\frac{90 \times 100 \times 12}{4000 \times 8}$
$=\frac{27}{8} \%=3 \frac{3}{8} \%$
18. Divide Rs. 6800 in two parts so that S.I. on the first part for $3 \frac{1}{3}$ years at 6% may be equal to the
interest on the second part for
$3 \frac{1}{2}$ years at 4% P.a.
(1) Rs. 2600 ; Rs. 4200
(2) Rs. 2800 ; Rs. 4000
(3) Rs. 2500 ; Rs. 4300
(4) Rs. 2700 ; Rs. 4100

Ans: (2)
Let the first part be Rs. x
Then second part
$=$ Rs. $(6800-x)$
Interest on first part for $3 \frac{1}{3}$
years at 6%
$=\frac{x \times 6 \times \frac{10}{3}}{100}=\frac{x}{5}$
Interest on second part for $3 \frac{1}{2}$
years at 4\%

$$
=\frac{(6800-x) \times 4 \times \frac{7}{2}}{100}
$$

$=$ Rs. $\frac{(6800-x) 7}{50}$
According to the problem
$\frac{x}{5}=\frac{(6800-x)^{7}}{50}$
$\Rightarrow 10 x=(6800-x) 7$

Hence first part $=$ Rs. 2800 and second part
$=$ Rs. $(6800-2800)=$ Rs. 4000

